\(\int \cos ^2(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx\) [283]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 120 \[ \int \cos ^2(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=-\frac {3 i \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} d}+\frac {3 i a}{4 d \sqrt {a+i a \tan (c+d x)}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}} \]

[Out]

-3/8*I*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a^(1/2)/d*2^(1/2)+3/4*I*a/d/(a+I*a*tan(d*x+c))^(1
/2)-1/2*I*a^2/d/(a+I*a*tan(d*x+c))^(1/2)/(a-I*a*tan(d*x+c))

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {3568, 44, 53, 65, 212} \[ \int \cos ^2(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=-\frac {i a^2}{2 d (a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}-\frac {3 i \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} d}+\frac {3 i a}{4 d \sqrt {a+i a \tan (c+d x)}} \]

[In]

Int[Cos[c + d*x]^2*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(((-3*I)/4)*Sqrt[a]*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/(Sqrt[2]*d) + (((3*I)/4)*a)/(d*Sqrt
[a + I*a*Tan[c + d*x]]) - ((I/2)*a^2)/(d*(a - I*a*Tan[c + d*x])*Sqrt[a + I*a*Tan[c + d*x]])

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 53

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3568

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[1/(a^(m - 2)*b
*f), Subst[Int[(a - x)^(m/2 - 1)*(a + x)^(n + m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x
] && EqQ[a^2 + b^2, 0] && IntegerQ[m/2]

Rubi steps \begin{align*} \text {integral}& = -\frac {\left (i a^3\right ) \text {Subst}\left (\int \frac {1}{(a-x)^2 (a+x)^{3/2}} \, dx,x,i a \tan (c+d x)\right )}{d} \\ & = -\frac {i a^2}{2 d (a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}-\frac {\left (3 i a^2\right ) \text {Subst}\left (\int \frac {1}{(a-x) (a+x)^{3/2}} \, dx,x,i a \tan (c+d x)\right )}{4 d} \\ & = \frac {3 i a}{4 d \sqrt {a+i a \tan (c+d x)}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}-\frac {(3 i a) \text {Subst}\left (\int \frac {1}{(a-x) \sqrt {a+x}} \, dx,x,i a \tan (c+d x)\right )}{8 d} \\ & = \frac {3 i a}{4 d \sqrt {a+i a \tan (c+d x)}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}-\frac {(3 i a) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{4 d} \\ & = -\frac {3 i \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{4 \sqrt {2} d}+\frac {3 i a}{4 d \sqrt {a+i a \tan (c+d x)}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.11 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.42 \[ \int \cos ^2(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\frac {i a \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},2,\frac {1}{2},\frac {1}{2} (1+i \tan (c+d x))\right )}{2 d \sqrt {a+i a \tan (c+d x)}} \]

[In]

Integrate[Cos[c + d*x]^2*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((I/2)*a*Hypergeometric2F1[-1/2, 2, 1/2, (1 + I*Tan[c + d*x])/2])/(d*Sqrt[a + I*a*Tan[c + d*x]])

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 383 vs. \(2 (94 ) = 188\).

Time = 38.56 (sec) , antiderivative size = 384, normalized size of antiderivative = 3.20

method result size
default \(-\frac {i \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+3 i \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \sin \left (d x +c \right )+3 i \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+6 i \cos \left (d x +c \right ) \sin \left (d x +c \right )+3 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \sin \left (d x +c \right )-3 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \cos \left (d x +c \right )-3 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right )-2 \left (\cos ^{2}\left (d x +c \right )\right )\right )}{8 d}\) \(384\)

[In]

int(cos(d*x+c)^2*(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/8*I/d*(a*(1+I*tan(d*x+c)))^(1/2)*(3*I*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/
(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)+3*I*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan((-cos(d*x+c)/(cos
(d*x+c)+1))^(1/2))*sin(d*x+c)+3*I*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d
*x+c)/(cos(d*x+c)+1))^(1/2))+6*I*cos(d*x+c)*sin(d*x+c)+3*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)
/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)-3*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan((-c
os(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)-3*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan((-cos(d*x+c)/(cos(d*x+
c)+1))^(1/2))-2*cos(d*x+c)^2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 253 vs. \(2 (87) = 174\).

Time = 0.25 (sec) , antiderivative size = 253, normalized size of antiderivative = 2.11 \[ \int \cos ^2(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=-\frac {{\left (3 \, \sqrt {\frac {1}{2}} d \sqrt {-\frac {a}{d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (-4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (i \, d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {-\frac {a}{d^{2}}} - a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 3 \, \sqrt {\frac {1}{2}} d \sqrt {-\frac {a}{d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (-4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (-i \, d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {-\frac {a}{d^{2}}} - a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-i \, e^{\left (4 i \, d x + 4 i \, c\right )} + i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 2 i\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{8 \, d} \]

[In]

integrate(cos(d*x+c)^2*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/8*(3*sqrt(1/2)*d*sqrt(-a/d^2)*e^(I*d*x + I*c)*log(-4*(sqrt(2)*sqrt(1/2)*(I*d*e^(2*I*d*x + 2*I*c) + I*d)*sqr
t(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(-a/d^2) - a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 3*sqrt(1/2)*d*sqrt(-a/d^2
)*e^(I*d*x + I*c)*log(-4*(sqrt(2)*sqrt(1/2)*(-I*d*e^(2*I*d*x + 2*I*c) - I*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))
*sqrt(-a/d^2) - a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(-I*e^(4*I*d*
x + 4*I*c) + I*e^(2*I*d*x + 2*I*c) + 2*I))*e^(-I*d*x - I*c)/d

Sympy [F]

\[ \int \cos ^2(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \cos ^{2}{\left (c + d x \right )}\, dx \]

[In]

integrate(cos(d*x+c)**2*(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(I*a*(tan(c + d*x) - I))*cos(c + d*x)**2, x)

Maxima [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.02 \[ \int \cos ^2(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\frac {i \, {\left (3 \, \sqrt {2} a^{\frac {3}{2}} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right ) + \frac {4 \, {\left (3 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{2} - 4 \, a^{3}\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}} - 2 \, \sqrt {i \, a \tan \left (d x + c\right ) + a} a}\right )}}{16 \, a d} \]

[In]

integrate(cos(d*x+c)^2*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/16*I*(3*sqrt(2)*a^(3/2)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) + a))/(sqrt(2)*sqrt(a) + sqrt(I*a*tan(
d*x + c) + a))) + 4*(3*(I*a*tan(d*x + c) + a)*a^2 - 4*a^3)/((I*a*tan(d*x + c) + a)^(3/2) - 2*sqrt(I*a*tan(d*x
+ c) + a)*a))/(a*d)

Giac [F]

\[ \int \cos ^2(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int { \sqrt {i \, a \tan \left (d x + c\right ) + a} \cos \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(cos(d*x+c)^2*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(I*a*tan(d*x + c) + a)*cos(d*x + c)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \cos ^2(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int {\cos \left (c+d\,x\right )}^2\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}} \,d x \]

[In]

int(cos(c + d*x)^2*(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

int(cos(c + d*x)^2*(a + a*tan(c + d*x)*1i)^(1/2), x)